
Evaluating the Numerical Stability
of Posit Arithmetic

Nicholas Buoncristiani
Lawrence Berkeley National Laboratory

and UC Berkeley
Berkeley, California

NickBuoncristiani@lbl.gov

Sanjana Shah
Lawrence Berkeley National Laboratory

and UC Berkeley
Berkeley, California
SanjanaShah@lbl.gov

David Donofrio
Lawrence Berkeley National Laboratory

and Tactical Computing Laboratories
Berkeley, California
DDonofrio@lbl.gov

John Shalf
Lawrence Berkeley National Laboratory

Berkeley, California
JShalf@lbl.gov

Abstract—The Posit number format has been proposed by John
Gustafson as an alternative to the IEEE 754 standard floating-
point format. Posits offer a unique form of tapered precision
whereas IEEE floating-point numbers provide the same relative
precision across most of their representational range. Posits are
argued to have a variety of advantages including better numerical
stability and simpler exception handling.

The objective of this paper is to evaluate the numerical
stability of Posits for solving linear systems where we evaluate
Conjugate Gradient Method to demonstrate an iterative solver
and Cholesky-Factorization to demonstrate a direct solver. We
show that Posits do not consistently improve stability across a
wide range of matrices, but we demonstrate that a simple re-
scaling of the underlying matrix improves convergence rates for
Conjugate Gradient Method and reduces backward error for
Cholesky Factorization. We also demonstrate that 16-bit Posit
outperforms Float16 for mixed precision iterative refinement –
especially when used in conjunction with a recently proposed
matrix re-scaling strategy proposed by Nicholas Higham.

Index Terms—Posit, IEEE floating-point, numerical stability,
linear algebra

I. INTRODUCTION

The IEEE 754 number formats that were standardized
in 1985 have become the default approach for floating-
point arithmetic in digital systems. This standard has enabled
portable floating-point arithmetic across diverse computing
platforms. IEEE floating-point defines a mantissa which stores
the significant bits and an exponent to represent the scaling of
the mantissa. The size of these two components are fixed by
the IEEE standard for the 32-bit (Float32), 64-bit (Float64),
and 16-bit (Float16) binary formats. The Posit format has
some similarities with IEEE 754, but it allows the number
of significant bits to vary depending on how close the scaling
component is to zero or equivalently how close the number
being represented is to one in the geometric sense. This
has potentially useful properties for concentrating numerical
precision where it is more likely to be used, and for extending

the range of lower-precision (16-bit and 32-bit) numerical
formats.

Unfortunately, many fundamental results in numerical anal-
ysis are not easily applicable to Posits because we cannot put
a bound on the relative error that will arise – even for simple
arithmetic operations. For this reason, we must subject Posits
to a number of empirical tests to compare them with their
IEEE floating-point competitors. Ultimately, the value of a new
floating point format such as Posit is not just in the elegance
of its implementation, but also its performance and numerical
stability for real world problems.

The primary contribution of this work is to present a detailed
evaluation of the stability of Posit arithmetic for numerical
linear-system solvers – both for iterative and direct methods.
We provide a first-order evaluation of the Posit’s numerical
properties so that we can assess its potential value to scientific
applications. Aside from Gustafson’s original work, this paper
is among the first completely independent analyses of the
numerical stability properties of Posit arithmetic.

Our key findings are that for matrices in their native range
there is typically no substantial difference in the numerical
accuracy of Posits in comparison with equivalently sized IEEE
formatted numbers when applied to linear solvers. However, if
a matrix is re-scaled to optimize the Posit representation, then
Posit32 may offer up to 4 extra bits of precision over Float32,
and Posit16 may offer 2 extra bits over Float16.

II. BACKGROUND

We provide a brief overview of the IEEE and Posit floating
point formats.

A. IEEE format

The IEEE 754 standard [1] defines the format of float-
ing point variables as shown in Fig. 1. For single-precision
variables the total number of bits is 32 and double-precision
variables, the total number of bits is 64, including the most

Fig. 1. Binary format for the IEEE 754 standard.

significant bit which is the sign. In both cases, the mantissa
includes a silent bit at its most significant position, which is
1 if the exponent is non-zero.

If the exponent is non-zero, the number is considered
normalized and a bias of -1023 is applied to the exponent
value. Therefore, an exponent value of 50 represents an actual
exponent of 50 − 1023 = −973. The decimal value of a
normalized double is:

V alue = (−1)sign × [1.Mantissa]× 2Exp−1023 (1)

IEEE floating point variables with a zero exponent are
considered denormalized and are used to fill the gaps in the
numbers that double-precision variables can represent close to
zero. A denormalized double-precision variable encodes the
number:

DenormV alue = (−1)sign × 0.Mantissa× 2−1022 (2)

Operating on numbers that have significantly different ex-
ponent values can cause bits to be dropped and thereby
accumulate numerical error [2]. Such precision loss is hard
to predict in many applications and can appear with just
two operands, but can manifest as large numerical errors for
direct solves or failure to converge to a solution for iterative
solvers [3]–[5].

B. Posit format

John Gustafson developed the unum (universal number), a
novel binary format for real numbers that claims to increase
precision over the IEEE format for the same amount of
memory. A Posit is a hardware-friendly unum representation
and has four parts: sign bit, regime, exponent, and fraction.
A Posit number is defined using the total number of bits, n,
and the exponent size, ES. The sign bit is 0 or 1, representing
positive or negative respectively. The number of regime bits is
variable and is indicated by a run of identical bits after the sign
bit which is terminated by the first opposite bit. The value k
represents the length of this run of identical bits and is positive
if these bits are 1 and negative if they are 0. If there are any
bits left after the sign and regime bits, the next partition is
reserved for exponent bits, and following the exponent bits
are the fraction bits.

USEED = 22
es

(3)

RegimeV alue = USEEDk (4)

The fraction, frac, is 1 + the fraction bits following a
decimal point. The absolute value of the Posit number is:
regimeValue * exponentValue (if any bits) * fractionValue (if
any bits).

Fig. 2. Binary format for the Posit arithmetic standard as described by its
inventor, John Gustafson.

There are two special cases for Posit, 0 which is represented
by all 0 bits and ±∞ which is represented by a 1 in the sign
bit followed by n-1 0 bits. The latter is sometimes referred to
as NaR or “Not a Real”.

For the rest of this paper, we will identify the Posit data-
types succinctly according to their size and the ES parameter
by Posit(size, ES). For example, 32-bit Posit with ES set to 2
will be identified by Posit(32, 2).

Numerical error is incurred whenever an operation requires
a number to be rounded to the nearest representable value.
For Float, this error will always be bounded relative to the
magnitude of the result. What this means precisely is as
follows. Define F ⊂ R to be the set of representable floating
point values and let f : R → F denote the conversion from
R to the nearest value in F . Then for any x ∈ R (that is
within the range of normalized Float), f(x) = x(1+ ε) where
ε is a constant value. In the case of Float32, for example,
ε = 5.96 ∗ 10−8 and for Float64, ε = 1.00 ∗ 10−16.

For Posits this axiom no longer holds for a fixed ε. For
Posit(32, 2), for example, ε ranges from 3.73∗10−9 to USEED
at the largest. The assumption which motivates the Posit
format is that numbers close to one in the geometric sense
are the most commonly occurring in computation, so to take
advantage of this design numbers close to one are represented
such that the relative error bound ε is as small as possible. A
visualization of this interpretation is shown in Fig. 3. Taking
inspiration from de Dinechin [6], we will refer to the area
where Posit has improved precision over Float as the “golden-
zone” for convenience.

Fig. 3 compares the absolute precision and relative precision
of the floating point and Posit number encodings. In particular
Fig. 3(b) shows more clearly how the Posit precision is
enhanced for numbers in the vicinity of 1.0 (and -1.0), and
that decreasing the number of ES bits improves maximum
precision but precision tapers off faster.

C. Posit Arithmetic

The algorithm for Posit addition shown in Fig. 4(a) is very
similar to that of subtraction, so we will only walk through
the addition example. Addition consists of comparing regimes
and exponents for both numbers and shifting each up by the
difference in number of bits to make them equal. Once the
regimes and exponents are equal, addition can be performed
on the fraction bits. Overflow would occur if the fraction was
greater than or equal to 2 and underflow would occur if the
fraction was less than 1. After adding, if any overflow exists,
the overflow gets carried into the exponent or all the way to

(a) Absolute Precision (b) Relative Precision

Fig. 3. The absolute precision distributions in [10−12, 1012] of the different Posit and IEEE number formats are shown in (a). Relative precision distributions
(or simply “digits of precision”) are shown in (b) for Posit32 and Float32. Numbers close to 100 have higher precision in Posit format and have better relative
precision until roughly 10−5 for Posit(32, 2).

reg = reg1

frac2 >> useed*diff
k2 += diff

frac1 >> useed*diff
k1 += diff

frac1 >> diff
frac2 >> diff
exp2 += diff

frac >> 1

frac << 1

expVal = 2^exp1

(a) Add

frac2 >> useed*diff
k2 += diff

frac1 >> useed*diff
k1 += diff

frac1 >> diff
frac2 >> diff
exp2 += diff

expVal = 2^exp1

expVal representable?

diff = 0

k -= 1
expVal *= useed

borrowing from regime

(b) Subtract

DONE

expVal = 2^(exp1 * exp2)

(c) Multiply

DONE

expVal = 2^(exp1 - exp2)

expVal *= 2^(shiftVar)

(d) Divide

Fig. 4. Flowcharts for Posit arithmetic algorithms.

the regime if necessary, while the fraction shifts right by one
bit. If carried into the regime, the exponent will be brought
down to 0. Conversely, if any underflow exists, the scaling
component will be shifted down by one bit while the fraction
shifts up one bit. The regime of the output takes on the value
of one of the regimes, as they are both equal. The same process
goes for the exponent, where the output takes on the value of
one of the exponents, as they are both equal. The sign of the
output is taken by computing the sign of the first input value
XOR the sign of the second input value and then is negated.

The algorithm for Posit multiplication shown in Fig. 4(c) is
similar to the division algorithm, but unlike addition it does
not consist of any comparisons made between the regimes
and exponents of the two values. Instead, the fraction bits are
simply multiplied, as well as the exponent bits, and overflow
is dealt with by checking if the resulting exponent value can
be represented using the number of ES bits. If it cannot be,
the exponent value is divided by two as the overflow gets

carried into the regime. The value of the regime is obtained
by adding the k values of the regimes of the two input values
and multiplying by useedshiftV ar, where shiftVar represents
the value the regime must shift by. This is done to include the
carried overflow in the regime. The sign of the output is taken
by computing the sign of the first input value XOR the sign
of the second input value.

Posit arithmetic conventions state that collective operations
such as the dot-product should be carried out in a scratchpad
register called a quire such that rounding is deferred until
the end of the calculation. Initial comparisons between Posits
and floats [6] rely on the assumption that Posits have access
to the quire whereas floats are forced to round after every
intermediate computation or they are limited to FMA as their
only fused operation. Such fused operations like extended dot-
product are entirely plausible for floats as well as Posits;
Michelogiannakis [7] demonstrates that a rounding-deferred
accumulate for Float32 and Float64 can be implemented using

relatively simple hardware. Because these fused operations
may improve performance substantially for both IEEE Floats
and for Posits, we do not believe it is illuminating to compare
the two formats this way because this does not highlight
advantages that may be derived from the Posit format itself.
Therefore, we offer our experiments operate without this
assumption of deferred rounding.

III. RELATED WORK

Very little work has been published evaluating the properties
of Posits aside from the publications of its inventor. In his
seminal work describing Posits, John Gustafson [6] uses some
simple experiments to demonstrate that Posit may perform
very well for solving linear systems. The initial work shows
examples where a single precision (32-bit) Posit may achieve
a better quality numerical result than an IEEE double precision
float for Gaussian elimination if it is allowed a step of
iterative refinement where the residual is computed using the
quire to fuse the dot-product operation. The matrix used in
this experimented was generated with pseudo-random entries
evenly distributed over the interval [0, 1) which naturally gives
Posit an advantage over Float since most of these entries will
lie close to 0 on a log-scale. To level the playing field, our
experiments use a wide variety of scientific matrices taken
from Matrix Market some of which may be poorly scaled for
Posits, and we avoid the use of the quire for either format.

Improved hardware support for low precision floats targeting
artificial intelligence applications has inspired work on mixed
precision linear algebra as a way to improve performance
by exploiting fast low-precision arithmetic. Recent work by
Haider, Carson, and Higham [8]–[10] have demonstrated the
effectiveness of using Float16 to perform the factorization
stage of an iterative refinement (IR) procedure. The motivating
idea is to perform the O(n3) work (i.e LU factorization) in
a lower precision to capitalize on the faster arithmetic, and
to refine the solution in a second stage by O(n2) refinement
iterations. For this paper we use Cholesky-Factorization for
the work intensive O(n3) stage of the algorithm and we
use classic iterative-refinement to achieve a solution that is
accurate to Float64 precision. We use Cholesky Factorization
instead of LU because it does not depend on row-pivoting and
we are working with symmetric positive-definite matrices in
this paper.

Higham [10] proposes strategies for scaling a matrix so that
the limited dynamic range of Float16 is less problematic for
mixed-precision IR. In this paper, we demonstrate that using
Posit(16, 2) instead of Float16 may also help mitigate this
issue due to its substantially increased dynamic range. We
also demonstrate that if we apply Higham’s scaling method
to Posits then by tweaking a single step we can easily fit
the matrix into the Posit “golden-zone” and achieve faster
convergence then is possible with Float16. This points to
a potential advantageous use of Posits for mixed precision
arithmetic.

de Dinechin [6] analyzes some high level numerical prop-
erties of Posits and makes the observation that effective use

of the Posit format requires the programmer to be aware
of the scale of their problem similar to how fixed point
arithmetic once required this before the days of floating point
arithmetic. Based on this observation, we can think of Posit
as an intermediate between scale-agnostic IEEE floating-point,
which sacrifices some precision for the sake of convenience
and fixed-point, which offers the maximum possible precision
at the expense of high effort to the programmer. In this paper
we demonstrate via experimental results how re-scaling affects
the numerical stability of algorithms for solving linear systems.

IV. EXPERIMENTAL METHODOLOGY

The primary applications we will emphasize in this paper
are numerical methods for solving systems of linear equations.
We test CG, Cholesky-factorization, and mixed-precision iter-
ative refinement. For each application of interest, we offer a
simple re-scaling strategy to exploit Posit tapered precision,
and we demonstrate results with and without this manual re-
scaling. We believe re-scaling strategies for Posits may be an
interesting avenue of research in their own right.

Our experiments for evaluating the numerical properties of
Posits and IEEE Floats for solving classic Ax = b linear
systems are summarized below.

1) Classic conjugate gradient method (CG)
2) CG with matrix re-scaling
3) Cholesky factorization solver
4) Cholesky factorization with matrix re-scaling
5) Mixed precision iterative refinement
6) Mixed precision iterative refinement using Higham’s

scaling

A. Implementation of Posit Arithmetic Library

We implemented the Posit arithmetic library using simple
C++ operator overloading to enable the key operators (+, -, /,
*, etc...) to implement a variety of Posit formats, and allow
us to use one algorithm specification to test each different
arithmetic format. Although there are a number of Posit library
implementations available, most did not allow for varying the
number of ES bits. Lastly, we created differential validation
tests against GNU GMP (GNU Multi-Precision Arithmetic
library) that operates at effectively unlimited precision and
offers a reliable ground truth. We were able to exhaustively
test the results of our library against existing implementations
to validate our approach.

B. Sample Matrices

The matrices that are used throughout the rest of our
experiments in this paper are shown in Table I and are listed
in increasing order of their 2-Norm, ‖A‖2. The reason for this
ordering will become apparent later in this article.

To evaluate Gustafson’s claim that most arithmetic occurs
close to 100 where Posit has improved precision, we created
histograms which represent the number of additional bits of
precision offered by Posit32 relative to the Float32 format
when representing matrices taken from the Matrix Market
repository. We obtained these results by loading non zero

TABLE I
MATRICES FROM MATRIX MARKET REPOSITORY LISTED IN INCREASING

ORDER OF THEIR 2-NORM, ‖ · ‖2 .

Matrix k(A) N ‖A‖2 NNZ

plat362 2.2e11 362 7.7e-01 5786
mhd416b 5.1e9 416 2.2e0 2312
662 bus 7.9e5 662 4.0e3 2474
lund b 3e4 147 7.4e3 2441

bcsstk02 4.3e3 66 1.8e4 4356
685 bus 4.2e5 685 2.6e4 3249
1138 bus 8.6e6 1138 3.0e4 4054
494 bus 2.4e6 494 3.0e4 1666

nos5 1.1e4 468 5.8e5 5172
bcsstk22 1.1e5 138 5.9e6 696

nos6 7.7e6 685 7.7e6 3255
bcsstk09 9.5e3 1083 6.8e7 18437
lund a 2.8e6 147 2.2e8 2449
nos1 2e7 237 2.5e9 1017

bcsstk01 8.8e5 48 3.0e9 400
bcsstk06 7.6e6 420 3.5e9 7860

msc00726 4.2e5 726 4.2e9 34518
bcsstk08 2.6e7 1074 7.7e10 12960

nos2 5.1e9 957 1.57e11 4137

(a) Precision Posit(32,2) (b) Precision Posit(32,3)

Fig. 5. Average distribution of non-zero entries for matrices in Matrix Market
repository in terms of number of bits of precision compared with Float32.
Most matrices seem to fit nicely within the golden-zone for Posits.

entries from these matrices into Posit and counting how many
fraction bits were available, each matrix was weighted equally
in obtaining these plots so that huge matrices would not
dominate the results. Fig. 5(a) and Fig. 5(b) show these results
for Posit(32, 2) and Posit(32,3).

C. Conjugate Gradient Method

Conjugate Gradient Method (CG) is an iterative method
for solving linear systems, meaning that we should obtain a
more precise solution as we increase the number of iterations.
More precise arithmetic should be able to allow for faster
convergence which makes this a good test for comparing
the practical precision of the Posit and Float format. CG is
a Krylov-subspace method, so it is driven by matrix-vector
multiplications rather than by a factorization as are most direct
methods. This latter fact becomes relevant when we want to
re-scale to improve Posit performance.

As shown in line 5, the residual is computed by a math-
ematically equivalent recurrence relation rather than directly
from the definition, b−Axi. If CG takes too many iterations to
converge, it may introduce a significant discrepancy between

Algorithm 1 CG
1: x0 = 0, r0 = b, p0 = r0
2: for i = 0, 1, 2, ... do:
3: αi ← 〈ri,ri〉

〈pi,Api〉
4: xi ← xi−1 + αpi
5: ri ← ri−1 − αiApi
6: βi ← 〈ri,ri〉

〈ri−1,ri−1〉
7: pi ← r + βipi−1

the computed residual ri and the true residual. This can in
some cases lead to a slightly premature convergence since CG
uses ri as its convergence test. We noticed that this was the
case in a handful of our experiments however we felt that it
was not enough of a differentiating factor to be worth including
in our results.

D. Cholesky Factorization

A direct solution to Ax = b typically involves a factoriza-
tion of A, followed by a solution stage where the factors of
A are used to find a solution. Typically the factorization stage
requires much more work than the solution stage.

Our direct-solve will use the Cholesky factorization A =
RTR where R is upper-triangular and RT is lower-triangular.

Given A, b the algorithm we use in our experiments is
defined in Algorithm 7.

Algorithm 2 Cholesky Factorization
1: RTR = A
2: x0 = 0
3: for i = 1, 2, 3, ... do:
4: ri ← b−Axi−1
5: solve RT y = ri for y
6: solve Rd = y for d
7: xi ← xi−1 + d

The presence of the for loop is so that we may generalize
this algorithm to IR for our final set of experiments. For our
single precision experiments with Cholesky Factorization we
run a single iteration and examine the relative backward error
which is is defined as ‖b−Ax‖2

‖b‖2 .

E. Mixed Precision

Our mixed precision experiments are based on traditional
IR where the cholesky factorization is performed in 16-bit
arithmetic and the factorization is cast into Float64 after line
1. of Algorithm 7 and is used to obtain a solution that is
accurate to Float64 precision by several refinement iterations.
We measure the number of iterations it takes to achieve an
accurate solution after performing the factorization in Float16
and Posit16 respectively.

Float16 has been shown to be successful for this task as
shown by Carson, Haider, and Higham. However Higham
explains that the limited reach of Float16 may make it
challenging to load a matrix into a Float16 approximation in
some cases, or limit its ability to factorize the matrix without

experiencing an overflow midway. We may be able to reduce
the chance of overflow by using Posit(16, 2) instead of Float16
due to its wider representational range however we will show
that Posits are also particularly well suited to the strategies
proposed by Higham to mitigate overflow concerns for Float16
since with little extra effort we can squeeze the matrix into a
range where Posit16 has superior accuracy.

V. RESULTS

A. Conjugate Gradient Method Results

1) Introduction: In this section we compare the rate of
convergence of CG for Float32, Posit(32, 2), and Posit(32,
3). Following the CG experiments in [11], we choose
x̂ = (1√

n
, . . . , 1√

n
)T such that ‖x̂‖ = 1 and we assume

convergence only when the size of our computed residual
‖b − Ax̂‖, drops below ‖b‖ ∗ 10−5. i.e the relative backward
error goes below 10−5. It is worth mentioning that this
convergence criteria is fairly strict since it was originally
selected for double precision CG convergence tests, however
we see it fit to exercise these numerical formats to their limits.

Experiments are performed on a wide variety of matrices
with different condition numbers and matrix-norms that were
obtained from the Matrix-Market collection. We load these
matrices into an extended precision format before casting into
finite precision. Float64 results are shown for reference.

2) Analysis: From our results shown in Fig. 6, we notice
similar convergence results between Float32 and Posit(32, 3).
On the other hand, Posit(32, 2) which is the conventional
configuration for Posit32 [6], [12], diverges when applied to a
handful of matrices and has very poor convergence for others.

As seen in Fig. 6 where matrices are sorted from left to right
with low matrix norms on the left and high matrix norms to
the right, matrices with large norms present a challenge for
Posits. Convergence issues begin to emerge starting at nos1
and for all matrices to the right of it where Posit(32, 2) fails
to converge and Posit(32, 3) shows poor convergence.

B. CG after re-scaling

CG is a Krylov-subspace method, so it takes advantage of
frequent matrix multiplication to converge to a solution as
opposed to operating directly on matrix itself. Since ‖ · ‖2
describes how much a matrix is capable of scaling a vector
through multiplication, it follows that the magnitudes of the
iterates and hence the quality of their representations are
intrinsically related to this matrix characteristic. This suggests
a simple strategy for stabilizing performance where we try to
scale the matrix such that Posit can work within the golden-
zone as much as possible by choosing a matrix norm which
is more likely to be advantageous for Posit. We decided
somewhat arbitrarily to scale such that ‖ · ‖∞ is close to 210

for these experiments. This will fit our matrices such that they
fall somewhere between 662 bus and 685 bus in scale. We
scale according to ‖ · ‖∞ as opposed to ‖ · ‖2 because it is
much easier to compute. We scale by a power of two so that
Float32 results should remain almost the same if not exactly
the same.

It is worth mentioning that scaling by a power of two is
not necessarily loss-free for Posit [6] so we sacrifice some
precision before the algorithm starts unless we start in a higher
precision, which we assume for the sake of convenience in our
CG and Cholesky-Factorization results. Note that this issue
does not apply to our mixed precision results which are shown
in Table III since this application assumes a higher precision
to start with.

As shown in Fig. 7, this re-scaling has improved Posit
convergence rates such that Posit(32, 3) converges faster for
all matrices. Furthermore, we may safely leave Posit32 in its
default configuration with 2 ES-bits without worrying about
convergence issues.

C. Cholesky Factorization Results

1) Overview: In this section we compare Float32 against
Posit32 when applied to Algorithm 7. We use the same
matrices and our method for computing b is the same as in our
CG experiments. Using Cholesky Factorization instead of LU
has little effect on the results, but it offers a simpler algorithm
which does not depend on row-pivoting to achieve optimal
performance. Our performance metric is relative backward
error which is defined as ‖b−Ax‖2

‖b‖2 where x is our computed
solution.

Posit(32, 2) does not give better results than Float32.
Posit(32, 3) does offer some benefit although the advantage
that either format offers degrades when matrix-norm is in-
creased. This relationship is shown explicitly in Fig. 8(b).

2) Re-scaling Cholesky: Unlike CG, which is built out
of matrix-vector multiplications, a factorization based direct-
solver operates directly on the entries of the matrix. For this
reason, we suspect the performance of Posit depends largely
on how well the entries of A fit into the golden-zone – meaning
that a matrix with entries close to 1 should perform best for
Posit.

Bringing entries closer to one by multiplying the matrix by
the inverse average of all nonzero entries showed little perfor-
mance gain for Posit. Observing that precise representation of
diagonal entries might have a greater influence on numerical
stability since these values are used as pivots, we tried scaling
the matrix by the reciprocal of the average absolute value of
all diagonal entries taken to the nearest power of two. Pseudo-
code for implementing this strategy is shown in Algorithm 4.

Algorithm 3 Matrix re-scaling for Cholesky
1: s← nearestPowerOfTwo(average(|Akk|))
2: A

′ ← 1
sA

3: b
′ ← 1

s b

4: Solve A
′
x = b

′

Fig. 9 shows our results after scaling according to this
strategy. Posit(32, 2) and Posit(32, 3) both perform better than
Float32 in every experiment. Posit(32, 2) consistently achieves
at least one extra digit of precision over Float32. Recall that
Posit(32, 2) should theoretically offer an extra 1.2 digits or
equivalently 4 bits of precision compared with Float32 if we

0

1000

2000

3000

4000

5000

pl
at

36
2

m
hd

41
6b

66
2_

bu
s

lu
nd

_b
bc

ss
tk

02
11

38
_b

us
68

5_
bu

s
no

s5
no

s6
49

4_
bu

s
bc

ss
tk

22
bc

ss
tk

09
lu

nd
_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6
bc

ss
tk

08
no

s2

Ite
ra

tio
ns

 U
nt

il
Co

nv
er

ge
nc

e

CG Convergence

Posit(32,2) Posit(32,3) FP32 FP64

(a) Convergence

-160
-140
-120
-100

-80
-60
-40
-20

0
20
40

pl
at

36
2

m
hd

41
6b

66
2_

bu
s

lu
nd

_b
bc

ss
tk

02
11

38
_b

us
68

5_
bu

s
no

s5
no

s6
49

4_
bu

s
bc

ss
tk

22
bc

ss
tk

09
lu

nd
_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6
bc

ss
tk

08
no

s2

%
 R

ed
uc

ed
 C

G
St

ep
s

% Reduced CG Steps of Posit vs. Float32

Posit(32,3) vs. Float32 Posit(32,2) vs. Float32

(b) %Improvement

Fig. 6. Number of iterations before CG convergence for 32-bit IEEE Floats vs. 32-bit Posit with 2 and 3 ES bits are shown in (a). Percent improvement of
Posit32 over Float32 is shown in (b), with negative values indicating that Posit32 did worse than the Float32. The matrices to the right of bcsstk01 do not
converge for Posit(32, 2).

0

500

1000

1500

2000

2500

pl
at

36
2

m
hd

41
6b

66
2_

bu
s

lu
nd

_b
bc

ss
tk

02
11

38
_b

us
68

5_
bu

s
no

s5
no

s6
49

4_
bu

s
bc

ss
tk

22
bc

ss
tk

09
lu

nd
_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6
bc

ss
tk

08
no

s2

Ite
ra

tio
ns

 U
nt

il
Co

nv
er

ge
nc

e

CG Convergence for Scaled Matrices

Posit(32,2) Posit(32,3) FP32 FP64

(a) Convergence

-25
-20
-15
-10

-5
0
5

10
15
20
25

pl
at

36
2

m
hd

41
6b

66
2_

bu
s

lu
nd

_b
bc

ss
tk

02
11

38
_b

us
68

5_
bu

s
no

s5
no

s6
49

4_
bu

s
bc

ss
tk

22
bc

ss
tk

09
lu

nd
_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6
bc

ss
tk

08
no

s2

%
 R

ed
uc

ed
 C

G
St

ep
s

% Reduced CG Steps of Posit32 vs. Float32 Scaled

Posit(32,3) vs. Float32 Posit(32,2) vs. Float32

(b) %Improvement

Fig. 7. Number of iterations to convergence (a) and percent improvement (b) on scaled matrices

are able to take full advantage of its tapered precision (for
reference Float32 offers about 7 digits of precision in the
absence of round-off error). We observe that across all of
our experiments Posit(32, 2) performs near this optimal mark,
thus by prioritizing that the diagonal entries of our matrix
fall within the golden-zone, we can achieve a final backward-
error which is correct to golden-zone precision irrespective of
whether or not our entire matrix is represented with this same
degree of precision.

D. Mixed Precision Iterative-Refinement

1) Introduction: Mixed precision has attracted interest in
recent years owing to improved hardware support for Float16
and the discovery that we can achieve a high quality so-
lution using iterative refinement even if the factorization is
computed using low precision arithmetic. One difficulty with
this approach is that Float16 has a very narrow dynamic
range which greatly increases the potential for overflow and
underflow. Indeed, a number of matrices in the Matrix-Market
repository, including nos1, have a majority of entries which
are completely out of range of Float16. Higham proposes a
strategy to mitigate this issue by multiplying the matrix on

either side by a diagonal matrix and then scaling by a constant
value such the entries fit neatly within the range of Float16. In
this section, we show that this additional step may be avoided
in several cases if we use Posit(16, 2) in place of Float16
because Posit(16, 2) simply offers much greater reach. More
importantly, we show that a minor modification of Higham’s
refinement algorithm allows us to fit the matrix comfortably
into the golden-zone for Posit16 and take nearly full advantage
of golden-zone precision.

2) Results: For our first set of experiments, we test the
performance for naive mixed precision iterative refinement
using Float16 and Posit16. Using the sample matrices, we
run Algorithm 7 such that the factorization stage is performed
using the low precision format. If an entry in the matrix is
larger then the maximum representable value of Float16 or
Posit16 then we round down to this value [10]. Note that
for both Posit16 and Float16 we use Float64 as our working
precision in order to isolate the effects that the factorization
precision has on convergence rate.

As shown in Table II, Posit(16, 2) is capable of solving
more matrices out of the box due to its wider dynamic range
but it is still appears to be a very challenging task. An entry

-1.00

-0.50

0.00

0.50

1.00

1.50

plat
362

mhd416b

662_bus

lund_b

bcss
tk0

2

1138_bus

685_bus
nos5

nos6

494_bus

bcss
tk2

2

bcss
tk0

9

lund_a
nos1

bcss
tk0

1

bcss
tk0

6

msc0
0726

nos2

Di
gi

ts
 o

f P
re

ci
sio

n

Cholesky: Digits of Extra Precision for Posit32 vs. Float32

Posit(32,3) vs.Float32 Posit(32,2) vs. Float32

(a) Precision Advantage

1.00E-01
1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10
1.00E+11
1.00E+12

-1

-0.5

0

0.5

1

1.5

plat
362

mhd416b

662_bus

lund_b

bcss
tk0

2

1138_bus

685_bus
nos5

nos6

494_bus

bcss
tk2

2

bcss
tk0

9
lund_a

nos1

bcss
tk0

1

bcss
tk0

6

msc0
0726

bcss
tk0

8
nos2

M
at

rix
 N

or
m

Si
gn

ifi
ca

nt
 D

ig
its

 o
f I

m
pr

ov
ee

nt
 fo

r P
os

it3
2

vs
. F

P3
2

Matrices

Matrix Norm vs Posit32 Advantage over FP32

Digits of Advantage Posit32 vs.FP32 Matrix Norm

(b) Error vs. Norm

Fig. 8. (a) shows Posit32 improvement over Float32 in terms of number of extra digits of precision which is computed as log10(
FloatResidual
PositResidual

). Positive
values indicate that Posit has an advantage over Float32. b) plots the digits of precision advantage for Posit(32, 2) against the norm of the matrix.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

pl
at

36
2

m
hd

41
6b

66
2_

bu
s

lu
nd

_b
bc

ss
tk

02
11

38
_b

us
68

5_
bu

s
no

s5
no

s6
49

4_
bu

s
bc

ss
tk

22
bc

ss
tk

09
lu

nd
_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6
bc

ss
tk

08
no

s2

Di
gi

ts
 o

f A
dv

an
ta

ge

Cholesky: ExtraDigits of Precision for Posit32 vs.
Float32 for Scaled Matrices

Posit(32,2) vs.FP32 Posit(32,3) vs.FP32

Fig. 9. Shows Posit32 advantage in terms of number of extra digits of
precision over Float32 for scaled matrices.

TABLE II
OUT OF BOX PERFORMANCE OF MIXED PRECISION ITERATIVE

REFINEMENT WITH FLOAT16 AND POSIT16. POSIT(16, 2) CAN SOLVE
MORE PROBLEMS THAN FLOAT16.

Matrix Float16 Posit(16; 1) Posit(16; 2)

mhd416b - - 8
662 bus 52 187 90
lund b 7 12 6

bcsstk02 13 51 23
685 bus 17 160 45

nos6 - 1000+ 1000+
494 bus - - 991
bcsstk09 - - 872
lund a - - 35

bcsstk01 - - 60
nos2 - - 1000+

of ‘-’ denotes that the matrix was unable to converge due
to poor factorization or arithmetic error encountered during
factorization. Matrices which are not included in this table
but are included in Table I were not able to converge for any
formats. 1000+ iterations indicates that convergence was not
achieved within 1000 iterations but the factorization itself was

successful. Note that if we were to use a more sophisticated
approach such as GMRES for solving the correction equation
these scenarios would be less likely to occur.

Now we turn our attention to a re-scaling strategy proposed
by Higham to better utilize Float16. The strategy is summa-
rized in Algorithm4 including some simplifications which are
allowed when we only consider symmetric matrices as we do
in this paper.

Algorithm 4 Higham Rescaling
1: obtain diagonal matrix R such that RAR has maximum

element of each row and each column equal to one.
2: choose µ according to some strategy to shift the entries

of A such that we can take better advantage of the range
of our half-precision format.

3: A(h) ← flh(µ(RAR)) where flh(·) denotes conversion
to half-precision.

The strategy for choosing R is shown in Algorithm 6. The
choice for µ is not portable across Float16 and Posit16, so we
made sure to pick µ so that we would not bias either format.
With Float16 in mind, Higham explains that µ should be large
enough to take full advantage of its limited dynamic range,
however it should be small enough to prevent subsequent
operations from overflowing. Higham chooses µ arbitrarily
to be .1 ∗ FP16max where FP16max is the largest repre-
sentable value for Float16. However because Posit works with
tapered precision, it would be undesirable to push its entries
so close to its maximum representable value. Experimentation
has shown us that the best choice for µ for Posit16 is simply
USEED, which is defined in Equation 3. Recall that we lose
one fraction bit every time our quantity exceeds a power of
USEED, and this will safely ensure that each row and column
have maximum entry equal to USEED.

We observe that scaling the matrix by a power of 4 gave
the best results – likely because it is both a power of two and
a perfect square (Cholesky factorization, unlike LU, makes

TABLE III
MIXED PRECISION ITERATIVE REFINEMENT AFTER SCALING BY

HIGHAM’S METHOD. POSIT(16, 1) OUTPERFORMS FLOAT16 IN EVERY
EXPERIMENT.

Matrix Float16 Posit(16, 1) Posit(16, 2) % diff

mhd416b 6 5 5 16.7
662 bus 71 31 17 56.3
lund b 6 5 6 16.7

bcsstk02 13 8 10 38.5
685 bus 18 2 16 88.9

nos5 11 10 11 9.1
nos6 1000+ 151 241 84.9

bcsstk22 17 9 11 47.1
bcsstk09 62 11 16 82.3
lund a 23 9 17 60.9
nos1 1000+ 822 1000+ 17.8

bcsstk01 11 8 9 27.3
bcsstk06 41 25 25 39.0

msc00726 17 7 10 58.8
bcsstk08 18 15 11 16.7

nos2 1000+ 1000+ 1000+ 0

use of the square-root operator). For this reason we round the
scaling factor suggested by Higham to the nearest power of 4
to even the playing field since USEED is already a power of
4 for positive ES values.

Algorithm 5 Strategy for finding R matrix
1: R = I
2: while maxi|rii − 1| ≤ tolerance do
3: for i = 1,2,...,n do:
4: ri ← ‖A(i, :)‖−1/2∞

5: A← diag(r)Adiag(r)
6: R← diag(r)R

Our convergence criterion are taken from Higham’s mixed
precision experiments which requires that the solution be
accurate to Float64 precision, this criteria is somewhat strict
because Higham uses the analysis done by Carson and himself
[9] which suggests that the residual should be computed in
twice the working precision in order to reliably obtain an
accurate solution. However to avoid unnecessary complication
since our objective is merely to compare Posit against Float,
all operations after the factorization are performed in Float64.
Furthermore, we use simple IR as shown in Algorithm 7 in-
stead of the more powerful GMRES strategy for computing the
correction equation. Similar to our CG tests, our convergence
criteria being fairly strict helps to accentuate the differences
between the two formats.

If we analyze the relative error involved in the factorization
shown in Figure 10(a) we notice that Posit16 is performing
consistently better than Float16 given this scaling strategy.
Posit(16, 1) will offer an extra two bits of precision (or .6
digits of precision) to the result in the best case scenario.
Figure 10(b) shows that Posit consistently achieves close to
this mark.

Table III shows that Posit16 requires fewer refinement
iterations than Float16 as expected by the reduced backward
error in the factorization.

VI. ANALYSIS

The results of our experiments show that Posit performs
slightly worse when applied to the CG algorithm and it may
perform marginally better or worse with Cholesky Factoriza-
tion depending on scaling. Our results show that performance
of Posit relative to Float is highly dependent on scaling, so
we took advantage of this fact in our secondary experiments
which show that we can easily improve Posit performance by
a simple scalar multiplication.

We hypothesize that certain procedures such as Bi-CG
which have been observed to produce even larger iterates than
traditional CG [10] may limit the potential for re-scaling as a
means to stabilize Posit since the working dynamic range is
very high.

Conversely, other procedures such as direct methods for
solving linear systems may require a narrower working dy-
namic range which should make them amenable to re-scaling
since the actual values used in computation are unlikely to drift
to dramatic highs and lows if we center around 1. For example,
LU factorization is observed to produce factors which are
scaled similarly to the initial matrix and for Cholesky and
QR factorization we know for certain that the norm of the
original matrix will not fluctuate too much compared with
that of its factors: ‖R‖ = ‖A‖ for QR factorization and
‖R‖ = ‖RT ‖ =

√
‖A‖ for Cholesky Factorization. This may

suggest that if the entries in A are within the golden-zone,
then subsequent arithmetic is likely to remain near the golden-
zone as well. In this paper we demonstrate that Cholesky
Factorization in particular is amenable to scaling approaches,
but we hypothesize that direct methods for solving linear
systems in general may be more suited to re-scaling strategies
and to the Posit format than iterative ones.

Since the advantage for Posit in terms of numerical stability
is at most 1 to 2 extra digits of precision. A more compelling
advantage for Posit may arise when we consider application
where dynamic range is also a concern. Since Float16 has such
limited representational range, we hypothesized that Posit16
could enable a more reliable alternative for the task of mixed
precision iterative refinement. We found that this was indeed
the case; however, in our experiments we found that issues
still arose as a result of the use of low precision where
there was too much error in the factorization to reliably
derive an accurate solution in double precision arithmetic or
an arithmetic error was encountered mid-way. So switching
to Posit16 alone did not show to be a sufficient action to
enable reliable low precision factorization. However we found
that Higham’s proposed re-scaling method for matrices helped
mitigate these issues considerably for both Float16 and Posit16
and it also provides an easy way to reap additional benefit from
the tapered precision of Posit16 and achieve a more accurate
factorization requiring fewer refinement iterations.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

m
hd

41
6b

66
2_

bu
s

lu
nd

_b

bc
ss

tk
02

68
5_

bu
s

no
s5

no
s6

bc
ss

tk
22

bc
ss

tk
09

lu
nd

_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6

bc
ss

tk
08

no
s2

%
 R

ed
uc

tio
n

in
 re

fin
em

en
t s

te
ps

Mixed Precision Posit16 vs. Float16

Posit(16,1) vs Float16 Posit(16,2) vs Float16

(a) Percent Reduction of Refinement Steps

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

m
hd

41
6b

66
2_

bu
s

lu
nd

_b

bc
ss

tk
02

68
5_

bu
s

no
s5

no
s6

bc
ss

tk
22

bc
ss

tk
09

lu
nd

_a

no
s1

bc
ss

tk
01

bc
ss

tk
06

m
sc

00
72

6

bc
ss

tk
08

no
s2

Di
gi

ts
 o

f E
xt

ra
 P

re
ci

sio
n

Digits of Extra Precision using Posit16 vs. Float16

Posit(16,1) vs. Float16 Posit(16,2) vs. Float16

(b) Improvement in Digits of Precision

Fig. 10. (a) shows percent reduction of number of refinement steps required for convergence when switching from Float16 to Posit16 using Higham’s scaling
(b) shows the number of additional digits of precision offered by Posit16 over Float16 for Cholesky-Factorization backward error which is computed as
‖RTR−A‖F
‖A‖F

, where R is the approximate factor.

VII. CONCLUSION

In this paper we explored the potential for the Posit for-
mat in terms of its numerical stability and offered a few
strategies for improving stability by scaling the problem to
a more appropriate working interval. We found that Posit did
not improve performance considerably for CG or Cholesky
Factorization results without this preliminary scaling however
Cholesky-Factorization appears to be particularly well suited
to deriving benefit from a re-scaling of the matrix. We found
that while both Float16 and Posit16 formats suffered from
overflow or arithmetic errors during naive iterative-refinement,
Posit16 with 2 ES bits was able to achieve convergence in
more cases as a result of its superior reach. We found that
if we re-scaled the matrix as proposed by Higham then we
could easily fit the matrix into an optimal range for Posit16
and reduce backward error by a factor which is consistent with
the maximum possible precision supported by Float16.

In future works we will explore other scientific algorithms
such as FFT, Bi-CG, and Sod’s Shock tube for CFD. In
particular we are interested in finding applications which may
naturally work well with Posit and those which be difficult to
reconcile even with re-scaling. We suspect that FFT may be a
good application for Posit because its narrow working range
makes it easy to squeeze into the Posit golden-zone.

ACKNOWLEDGMENT

We would like to thank Sherry Li, Phil Colella, and John
Gustafson for their feedback and valuable advice in pursuing
this paper. This research was carried out at LBNL, which is
operated for the U.S. Department of Energy Office of Science
under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] “IEEE standard for floating-point arithmetic,” ANSI/IEEE Std 754-2008.
[2] K. R. Ghazi, V. Lefevre, P. Theveny, and P. Zimmermann, “Why and

how to use arbitrary precision,” Computing in Science and Engineering,
vol. 12, no. 3, p. 5, 2010.

[3] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision compu-
tation: Mathematical physics and dynamics,” Applied Mathematics and
Computation, vol. 218, no. 20, 2012.

[4] E. Allen, J. Burns, D. Gilliam, J. Hill, and V. Shubov, “The impact of
finite precision arithmetic and sensitivity on the numerical solution of
partial differential equations,” Mathematical and Computer Modelling,
vol. 35, no. 11-12, 2002.

[5] J. M. Chesneaux, S. Graillat, and F. Jézéquel, “Rounding errors,” in
Wiley Encyclopedia of Computer Science and Engineering, 2008.

[6] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits:
The good, the bad and the ugly,” in Proceedings of the Conference
for Next Generation Arithmetic 2019, ser. CoNGA’19. New
York, NY, USA: ACM, 2019, pp. 6:1–6:10. [Online]. Available:
http://doi.acm.org/10.1145/3316279.3316285

[7] G. Michelogiannakis, X. S. Li, D. H. Bailey, and J. Shalf, “Extending
summation precision for network reduction operations,” International
Journal of Parallel Programming, vol. 43, no. 6, pp. 1218–1243, 2015.
[Online]. Available: https://doi.org/10.1007/s10766-014-0326-5

[8] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
gpu tensor cores for fast fp16 arithmetic to speed up mixed-precision
iterative refinement solvers,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp.
47:1–47:11. [Online]. Available: https://doi.org/10.1109/SC.2018.00050

[9] E. Carson and N. Higham, “Accelerating the solution of linear systems
by iterative refinement in three precisions,” S I A M Journal on Scientific
Computing, vol. 40, no. 2, pp. A817–A847, 2018.

[10] N. J. Higham, S. Pranesh, and M. Zounon, “Squeezing a matrix into
half precision, with an application to solving linear systems,” SIAM J.
Scientific Computing, vol. 41, no. 4, pp. A2536–A2551, 2019. [Online].
Available: https://doi.org/10.1137/18M1229511

[11] P. Ghysels and W. Vanroose, “Hiding global synchronization latency in
the preconditioned conjugate gradient algorithm,” Parallel Computing,
vol. 40, no. 7, pp. 224–238, 2014. [Online]. Available: https:
//doi.org/10.1016/j.parco.2013.06.001

[12] Gustafson and Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomput. Front. Innov.: Int. J., vol. 4, no. 2, pp. 71–86,
Jun. 2017. [Online]. Available: https://doi.org/10.14529/jsfi170206

